Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction
نویسندگان
چکیده
Activation of the PDGF receptor on human arterial smooth muscle cells (SMC) induces migration and proliferation via separable signal transduction pathways. Sphingosine-1-phosphate (Sph-1-P) can be formed following PDGF receptor activation and therefore may be implicated in PDGF-receptor signal transduction. Here we show that Sph-1-P does not significantly affect PDGF-induced DNA synthesis, proliferation, or activation of mitogenic signal transduction pathways, such as the mitogen-activated protein (MAP) kinase cascade and PI 3-kinase, in human arterial SMC. On the other hand, Sph-1-P strongly mimics PDGF receptor-induced chemotactic signal transduction favoring actin filament disassembly. Although Sph-1-P mimics PDGF, exogenously added Sph-1-P induces more prolonged and quantitatively greater PIP2 hydrolysis compared to PDGF-BB, a markedly stronger calcium mobilization and a subsequent increase in cyclic AMP levels and activation of cAMP-dependent protein kinase. This excessive and prolonged signaling favors actin filament disassembly by Sph-1-P, and results in inhibition of actin nucleation, actin filament assembly and formation of focal adhesion sites. Sph-1-P-induced interference with the dynamics of PDGF-stimulated actin filament disassembly and assembly results in a marked inhibition of cell spreading, of extension of the leading lamellae toward PDGF, and of chemotaxis toward PDGF. The results suggest that spatial and temporal changes in phosphatidylinositol turnover, calcium mobilization and actin filament disassembly may be critical to PDGF-induced chemotaxis and suggest a possible role for endogenous Sph-1-P in the regulation of PDGF receptor chemotactic signal transduction.
منابع مشابه
Sphingosine-l-Phosphate Inhibits PDGF-induced Chemotaxis of Human Arterial Smooth Muscle Cells: Spatial and Temporal Modulation of PDGF Chemotactic Signal Transduction
Activation of the PDGF receptor on human arterial smooth muscle cells (SMC) induces migration and proliferation via separable signal transduction pathways. Sphingosine-l-phosphate (Sph-l-P) can be formed following PDGF receptor activation and therefore may be implicated in PDGF-receptor signal transduction. Here we show that Sph-l-P does not significantly affect PDGF-induced DNA synthesis, prol...
متن کاملSPHINGOMYELIN METABOLITES A S SECOND MESSENGERS IN AIRWAY SMOOTH MUSCL E CELL P ROLIFERATION
Sphingolipid metabolism was examined in guinea-pig airway smooth muscle cells stimulated by platelet-derived growth factor (PDGF) and 4β-phorbol 12- myristate 13-acetate (PMA), as mitogens and bradykinin (BK) as non-mitogen. Stimulation of the cells by PMA and PDGF for 60 min. at 37°C induced the following changes in sphingolipid metabolites: in cells prelabeled with PH] palmitate, a 1.2 f...
متن کاملSphingosine-1-phosphate, a platelet-derived lysophospholipid mediator, negatively regulates cellular Rac activity and cell migration in vascular smooth muscle cells.
Previous studies demonstrated that sphingosine-1-phosphate (S1P) induced migration of human umbilical vein endothelial cells (HUVECs) whereas it inhibited that of vascular smooth muscle cells (SMCs). This study explored the molecular mechanisms underlying the contrasting S1P actions on vascular cell motility. In rat and human aortic SMCs, the chemoattractant platelet-derived growth factor B-cha...
متن کاملPhosphatidylinositol 3-kinase-independent signal transduction pathway for platelet-derived growth factor-induced chemotaxis.
Platelet-derived growth factor (PDGF)-BB is a potent chemoattractant for mesenchymal cells. Intracellular signal transduction for PDGF-induced chemotactic response has been reported to be dependent on phosphatidylinositol 3-kinase (PI3K) activation. Here, we report a PI3K-independent pathway operating for PDGF-induced chemotaxis in vascular smooth muscle cells and other cell types. Two differen...
متن کاملMitogen-activated protein kinase activation is involved in platelet-derived growth factor-directed migration by vascular smooth muscle cells.
Migration of vascular smooth muscle cells (VSMCs) is a crucial response to vascular injury resulting in neointima formation and atherosclerosis. Platelet-derived growth factor (PDGF-BB) functions as a potent chemoattractant for VSMCs and enhances these pathologies in the vasculature. However, little is known about the intracellular pathways that mediate VSMC migration. In the present study, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 130 شماره
صفحات -
تاریخ انتشار 1995